Insurance Regulation:
The Challenge of Big Data in Insurance:

Casualty Actuarial Society
Ratemaking & Product Management Seminar

Birny Birnbaum
Center for Economic Justice

March 20, 2018
Why CEJ Works on Insurance Issues

CEJ works to ensure *fair access* and *fair treatment* for insurance consumers, particularly for low- and moderate-income consumers.

Insurance is the Primary Institution to Promote Loss Prevention and Mitigation, Resiliency and Sustainability:

CEJ works to ensure insurance institutions maximize their role in efforts to reduce loss of life and property from catastrophic events and to *promote resiliency and sustainability* of individuals, businesses and communities.
What’s So Big About Big Data?

1. Insurers’ use of Big Data has huge potential to benefit consumers and insurers by transforming the insurer-consumer relationship and by discovering new insights into and creating new tools for loss mitigation.

2. Insurers’ use of Big Data has huge implications for fairness, access and affordability of insurance and for regulators’ ability to keep up with the changes and protect consumers from unfair practices.

3. The current insurance regulatory framework generally does not provide regulators with the tools to effectively respond to insurers’ use of Big Data. Big Data has massively increased the market power of insurers versus consumers and versus regulators.

4. Market forces alone – “free-market competition” – cannot and will not protect consumers from unfair insurer practices. So-called “innovation” without some consumer protection and public policy guardrails will lead to unfair outcomes.
5. Regulators and policymakers must understand the economic and competitive implications of Big Data on insurance. Without public policy action, captive markets will no longer be limited to add-on products markets like credit-related insurance. Other insurance markets – whether personal or commercial lines – will become captive markets where control over access is with the data vendors and algorithms describing and scoring the individual consumer or business.

6. The insurance industry and insurance regulatory systems are at a crossroad. One possible future is empowered consumers and businesses partnering with risk management and sustainability companies who also provide insurance.

Another choice is a small set of insurers, data brokers and consulting firms who control access to insurance through opaque algorithms.
Current Regulatory Framework Challenged in Era of Big Data

Old, Old School Big Data and the Current Regulatory Framework:

- Oversight of Statistical Plans and Data Collection
- Licensing and Oversight of Advisory Organization Providing Pricing Assistance to Insurers
- Filings and Statistical Data Contain and Reference Everything Insurers Use for Pricing
- Complete Transparency to Regulators

Old School Big Data: Credit-Based Insurance Scores. Limited Consumer Protections for Completeness and Accuracy of Data via the FCRA, Limited Oversight of Modelers and Models, Limited Transparency

Current Regulatory Framework Challenged in Era of Big Data

- Insurers now using data not subject to regulatory oversight or the consumer protections of the FCRA. Regulators have no ability to ensure the accuracy or completeness of these new data sets.

- Concept of unfair discrimination – consumers of similar class and hazard treated differently – becomes meaningless when insurers submit rating plans with millions of rate classes.

- New risk classifications can be proxies for protected classes, but with no recognition of disparate impact, risk classifications that have the effect of discriminating against protected classes are permitted. Big Data amplifies this problem.
How Insurance Is Different from Other Consumer Products

1. **The insurance is required** – by law and by lenders requiring protection of home or vehicle collateralizing the loan. Limits normal competition.

2. **Contract is a promise for future benefits** if an undesirable event occurs. If the product “fails” – the consumer learns the insurance policy won’t cover the loss – she is stuck and can’t purchase another policy that would protect her against a known loss. *Consumers have little or no information about the insurers’ performance*. Again, limits normal competition.

3. **Cost-based pricing is required by actuarial standards of practice and financial solvency**. The requirement for cost-based pricing is to protect insurer financial condition and prevent intentional or unintentional unfair discrimination.

4. **There is Profound Public Interest in Broad Coverage** – failure or inability of consumers and businesses to access insurance has implications not just for individual families and businesses, but for taxpayers, communities and the nation.
How to Keep Insurance Markets Competitive and Fair to Consumers and Improve Insurance Role for Economic Security, Loss Mitigation, Resiliency and Sustainability?

1. Articulate What the Future of Insurance Should Look Like.
 a. Monitor Markets More Comprehensively and Efficiently
 b. Develop Tools and Skills to Analyze Regulatory Big Data
 c. Establish Consumer Disclosure, Access, Ownership and Protection Rules for Personal Consumer Information Used by Insurers
 d. New Tools to Empower Consumers
 e. Modernize Oversight of Risk Classification
 i. Ethical Algorithms
 ii. Emphasize Loss Mitigation
 iii. Apply Disparate Impact Standard to Insurance
3. Assist, Not Criminalize, Low-Income Consumers to Obtain Essential Insurance.
2. Modernize Insurance Market Regulation

e. Modernize Oversight of Risk Classification

i. Ethical Algorithms: Employ best practices to identify and eliminate disparate impact against protected classes. Commonly used by lenders and used by some insurance service organizations. Practices are consistent with cost-based pricing.

ii. Emphasize Loss Mitigation: Deep commitment to cost-based pricing to ensure proper economic signals for cost of protection and loss mitigation investment. Emphasize risk classifications that empower consumers, prohibit use of socio-economic factors and credit scoring.

iii. Apply Disparate Impact Standard to Insurance: If intentional discrimination against protected classes is prohibited, unintentional discrimination that has the same effect should be prohibited and minimized – see Ethical Algorithms.
Big Data Algorithms Can Reflect and Perpetuate Historical Inequities

Barocas and Selbst: *Big Data’s Disparate Impact*

Advocates of algorithmic techniques like data mining argue that they eliminate human biases from the decision-making process. But an algorithm is only as good as the data it works with. Data mining can inherit the prejudices of prior decision-makers or reflect the widespread biases that persist in society at large. Often, the “patterns” it discovers are simply preexisting societal patterns of inequality and exclusion. Unthinking reliance on data mining can deny members of vulnerable groups full participation in society.
Algorithms have become one of the most powerful arbiters in our lives. They make decisions about the news we read, the jobs we get, the people we meet, the schools we attend and the ads we see. Yet there is growing evidence that algorithms and other types of software can discriminate. The people who write them incorporate their biases, and algorithms often learn from human behavior, so they reflect the biases we hold.

Q: Some people have argued that algorithms eliminate discrimination because they make decisions based on data, free of human bias. Others say algorithms reflect and perpetuate human biases. What do you think?

A: Algorithms do not automatically eliminate bias. . . .Historical biases in the . . .data will be learned by the algorithm, and past discrimination will lead to future discrimination.
Fairness means that similar people are treated similarly. A **true understanding of who should be considered similar for a particular classification task requires knowledge of sensitive attributes, and removing those attributes from consideration can introduce unfairness and harm utility.**

Q: Should computer science education include lessons on how to be aware of these issues and the various approaches to addressing them?
A: Absolutely! First, students should learn that design choices in algorithms embody value judgments and therefore bias the way systems operate. They should also learn that these things are subtle: For example, designing an algorithm for targeted advertising that is gender neutral is more complicated than simply ensuring that gender is ignored. They need to understand that classification rules obtained by machine learning are not immune from bias, especially when historical data incorporates bias.
Virginia Eubanks, *Automating Inequality: How High-Tech Tools Profile, Police, and Punish the Poor*

America’s poor and working-class people have long been subject to invasive surveillance, midnight raids, and punitive public policy that increase the stigma and hardship of poverty. During the nineteenth century, they were quarantined in county poorhouses. During the twentieth century, they were investigated by caseworkers, treated like criminals on trial. Today, we have forged what I call a digital poorhouse from databases, algorithms, and risk models. It promises to eclipse the reach and repercussions of everything that came before.
Why Are Some Risk Classification Prohibited?

- Are Race, Religion and National Origin Prohibited Risk Classifications in Every State?
- If insurers can show a correlation between Race, Religion or National Origin and the costs of the transfer of risk, what is the basis for prohibiting these factors?
- What about prohibitions on the use of genetic test results, gender or consumer credit information – why does the Genetic Information Nondiscrimination Act of 2008 prohibit health insurers from denying coverage or different premiums based on genetic information? Why do some states ban the use of consumer credit information or gender as risk classifications?
Why Are Some Risk Classification Prohibited?

Just over half of the states ban the use of race, religion and national origin in auto insurance risk classification. Just seven (7) states ban the use of race, religion and national origin for risk classification for auto, disability, life, health and property/casualty insurance.

Why are race, religion and national origin considered suspect classifications by the Supreme Court?

(1) there is a history of discrimination against the group in question;
(2) the characteristics that distinguish the group bear no relationship to the group members’ ability to contribute to society;
(3) the distinguishing characteristics are immutable; and
(4) the subject class lacks political power.

Stated differently: utilizing race, religion and national origin as risk classification would reflect and perpetuate historical discrimination.
Ethical Algorithms:
Minimizing Bias in Insurance Pricing and Claims Settlement Models

Common Industry Trade Argument:

Insurers don’t consider race, religion or national origin, so there can be no unfair discrimination on the basis of these factors.

Intentional Discrimination versus Disparate Impact:

If intentional discrimination against protected classes is prohibited, why would unintentional discrimination that has the same effect be permitted?
Example: Pricing Model

TransUnion Criminal History Score

“TransUnion recently evaluated the predictive power of court record violation data (including criminal and traffic violations)

“Also, as court records are created when the initial citation is issued, they provide insight into violations beyond those that ultimately end up on the MVR—such as violation dismissals, violation downgrades, and pre-adjudicated or open tickets.”

What is the likelihood that TU Criminal History Scores have a disparate impact against African-Americans? Consider policing records in Ferguson, Missouri.
US DOJ Investigation of the Ferguson Police Department

Ferguson’s approach to law enforcement both reflects and reinforces racial bias, including stereotyping. The harms of Ferguson’s police and court practices are borne disproportionately by African Americans, and there is evidence that this is due in part to intentional discrimination on the basis of race.

Ferguson’s law enforcement practices overwhelmingly impact African Americans. Data collected by the Ferguson Police Department from 2012 to 2014 shows that African Americans account for 85% of vehicle stops, 90% of citations, and 93% of arrests made by FPD officers, despite comprising only 67% of Ferguson’s population.
US DOJ Investigation of the Ferguson Police Department (2)

FPD appears to bring certain offenses almost exclusively against African Americans. For example, from 2011 to 2013, African Americans accounted for 95% of Manner of Walking in Roadway charges, and 94% of all Failure to Comply charges.

Our investigation indicates that this disproportionate burden on African Americans cannot be explained by any difference in the rate at which people of different races violate the law. Rather, our investigation has revealed that these disparities occur, at least in part, because of unlawful bias against and stereotypes about African Americans.
Ethical Algorithms: Minimizing Disparate Impact in Insurance Models

One Tool: Consider Prohibited Risk Classes in Model Development

Step 1: Include race, religion and national origin – or proxies for these characteristics if actual individual characteristic unknown – as independent variables – control variables – in the model.

By using the characteristics as independent variables in the development of the model, the remaining independent variables’ contribution (to explaining the dependent variable) is shorn of that part of their contribution that is a function of correlation with the prohibited characteristics. For the independent variables other than race, religion and national origin, what remains is a more accurate picture of the remaining independent variables’ contribution to the target outcome.

Step 2: Omit race, religion and national origin when the model is deployed.
Ethical Algorithms: Reasonable and Necessary for Insurance Pricing and Claims Settlement Models

1. Minimizes Disparate Impact – Stop the Cycle of Perpetuating Historical Discrimination.
2. Promotes Availability and Affordability for Underserved Groups
3. Improves Cost-Based Insurance Pricing Models
4. Improve Price Signals to Insureds for Loss Mitigation Investments
5. Help Identify Biases in Data and Modelers / Improve Data Insights
6. Improve Consumer Confidence of Fair Treatment by Insurers